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LElTER TO THE EDlTOR 

The Bohr-Sommerfeld quantisation for a ring-shaped potential 

Carlos Farina de Souza, Mirian Gandelman and Luiz Claudio 
Albuquerque 
Instituto de Fisica, Universidade Federal do Rio de Janeiro, llha do Fundlo, Cidade 
Universitlria, CEP 21945 Rio de Janeiro, Brazil 

Received 30 March 1989 

Abstract. Using the Bohr-Sommerfeld quantisation rule, we obtain the correct energy 
spectrum of the Hartmann potential. We also analyse the degeneracies found for this 
problem in the classical context. 

In a recent paper published in this journal [l], Kibler and Winternitz discussed the 
dynamical invariance algebra associated with the Hartmann potential [2]. It belongs 
to a class of ring-shaped potentials that show, like the Coulomb does, an extra 
degeneracy. These are examples of potentials that exhibit an ‘accidental degeneracy’-a 
degeneracy not explained in a simple way by the existence of a geometric symmetry. 

The Hartmann potential was introduced in 1972 [2] to account for some axial 
symmetric systems in quantum chemistry, such as some ring-shaped molecules. Since 
then, it has been solved using many different approaches either classically [l] or 
quantum mechanically [ 1,3-61. 

In this letter we first show that the straightforward application of the Bohr- 
Sommerfeld quantisation rule [7], based on the action-angle variables, leads to the 
correct spectrum for the bound states associated with the Hartmann potential. In the 
second place, we also use the action-angle variables to analyse classically the origin 
of the degeneracy found for the energy levels. 

We begin by making a brief review of the classical formalism to be used later. For 
more details the reader may consult [7]. Let us consider a classical system with n 
degrees of freedom described by the Hamiltonian H ( q , , .  . . , q n , p l , .  . . , p n ) .  The 
Hamilton-Jacobi (HJ) equation is given by 

where the classical action S is identified with the generating function of a canonical 
transformation which leads to the new set of canonical variables { Q ,  Pi}. The H J  

equation is nothing more than the statement that the new Hamiltonian is identically zero. 
If the Hamiltonian is time independent we can write 

S(qi ,  P , ,  1 )  W(qi, pi) - Et (2) 
where W(qi ,  pi) is called the Hamilton principal function. Using equation (2) the HJ 
equation takes the form 
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If a physical system describes a periodic motion, either a rotation or a libration, 
we can make a canonical transformation into a new set of canonical variables, called 
action-angle variables, which are extremely convenient for dealing with such systems. 
In particular, using these variables we can obtain the frequencies of the system without 
even solving the problem at hand. 

The action variables are defined as 

Ji Pi dqi 

while the angle variables are given by 

i = 1,2, . . . , n f (4) 

where, as usual, we write the Hamilton function in terms of the constants of motion 
Ji. Hamilton’s equations take the form 

. aH 
Ji =- ( . I 1 , .  * . , Jn) = o  

awi 

(66) 
aH 
dJi 

hi =- ( J , ,  . . . , J , )  = V j ( J 1 , .  * . , Jn). 

From ( 6 a )  we see that the Ji are actually constants. Since the vi are given only in 
terms of these constants, they are also constants and the direct integration of 6(6) yields 

wj = v,t + p i  i = 1 , 2  ,..., n. (7)  

It can be shown that the vi in the above equations are the frequencies associated with 
the periodic motion of the qi [7]. Hence, in order to get these frequencies there is no 
need to solve the problem at all. We just define the J i ,  write the Hamiltonian as 
H ( J l ,  . . . , J , )  and then evaluate vi = aH/aJ i .  

When there are m relations among the frequencies, written as 
n 

6 i k V i  = 0 k = 1,2,  . . . , m 
i = l  

where the bik are rational numbers, we say that the system is m-degenerated. When 
m = n - 1 we say that the system is completely degenerated, as for example the Kepler 
problem. In this case, all frequencies are commensurable-which means that any vi 
may be expressed as a rational number times any other vj-and the motion is periodic 
or, in other words, the particle describes a closed trajectory. 

Suppose now we are dealing with an m-degenerated system. Since not all the 
frequencies are independent of each other (there are only n - m independent ones), 
we can eliminate the redundant frequencies. This is achieved by a suitable point 
canonical transformation from the original set of variables ( 4 ,  mi} to a new set of 
action-angle variables {JI, w : }  for which m of the associated frequencies vi vanish. 
It is easy to show that the generating function for this transformation is given by 

m n  n 

F z ( W i ,  JI) = c J;bipi+ J ; W k  (9) 
k = l  i = l  k = m + l  

with the same 6 ,  appearing in (8). 
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Observing, then, that F2(wi ,  JI) is a generating function of the second kind, we have 

if k =  1,2, .  . . , m 

if k =  m + l , .  . . , n. 
Differentiating equation (10) and using equation (6b), we obtain 

n 

V L  = bikVi = 0 f o r k = l , 2 ,  . . . ,  m 
i =  1 

= vk. (1lb) 

Looking at equation (6b) we can also conclude that the Hamiltonian must be 
independent of the action variables J :  for which the associated frequencies vl vanish. 
Hence, for an m-degenerated system the Hamiltonian can always be written in terms 
of only n - m action variables. Following Sommerfeld we will call them ‘proper action 
variables’. We can obtain the JI through an inversion of the n transformation equations 

The Bohr-Sommerfeld quantisation rule is implemented by the following substi- 
tution: 

Ji 3 nh (13) 

where n is a positive integer number and h is the Planck constant. 
As a final comment before applying this formula to the Hartman potential, let us 

observe that, in general, the degeneracies become clear when we write the Hamiltonian 
in terms of the action variables and its functional dependence is analysed with these 
variables. Let us now apply the Bohr-Sommerfeld quantisation rule to obtain the 
energy spectrum for the Hartmann potential. Using spherical coordinates it can be 
written as 

a P  V(r, e )  = --+- 
r r2sin2 e 

where we defined 

(15a) 

(154) 

2 a = - 2 ~ c r  a,&, 
P E - $  2 2 

ff aoEoq.  

In the above equations, a, is the Bohr radius, E,  the energy for the ground state of 
the hydrogen atom, 7 and U are positive parameters whose variation allows different 
applications in quantum chemistry and q was introduced in order to regain the Coulomb 
potential for the particular case q = 0. 

However, it is convenient to work with parabolic coordinates (a, b, +), defined 
as P I  

x=J;;i;cos + (16a) 

y=J;;i;sin+ (166) 

z = $ ( a - b ) .  (16c) 
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The Hartman potential written in terms of these variables takes the form 

2ff P V( a, b, 4) = -- +-. 
a + b  ab 

The classical Lagrangian is then given by 

Making the Legendre transformation we get the Hamiltonian 

H(pa, Pb, P+; a, b) =paa+PbbfP&8) -2 

where pa, Pb and p+ are the canonical momenta conjugated to the variables a, b and 
4 respectively. As is well known, the HJ equation is completely separable in these 
coordinates (as well as in spherical ones). This means that we can write 

s=  W-Et=  wa(a)+Wb(b)+ W+(+)-Et. (20) 
From equations (20), (19) and (3) we have 

4mab" 

where we have multiplied the whole expression by 2mab. As usual, we set 

2 

whose solution is obvious. However, we do not need to solve the equations for W,, 
Wa and wb, since we are not interested in the solution of the problem. Essentially, 
all we need in order to proceed with the Bohr-Sommerfeld quantisation is to obtain 
explicitly all the action variables and then write the Hamiltonian in terms of them. 
For J+ we readily obtain 

J, = f 2 d 4  = 27~0,. 

Multiplying equation (21) by (a  + b)/ab and making use of the identity 

a + b  1 1 - +- 
ab a b 

we get 

4a (z) + 4b (T) '+ 2mj3 (:+;) - 4ma - 2mE(a + b) = - a:(;+;) (24) 

where we used J, = 2m,.  Separating variables in the above equation and using the 
definition of the action variables, we have 
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where the separation constant y was chosen as 

Consulting standard tables [9], we obtain after some rearrangement 

J, = -,(..‘,”/3)’’’+(-) 2 l/’ P -  y 
4P2 m ( - E )  4 

Jb = - ~ ( 3 + 2 m / 3 ) ” ’ + (  ma -5) P ( ~ ) ” ’ .  m ( - E )  

From ( 2 7 a )  we can write y in terms of J, 

Now, eliminating y from (27b)  with the aid of (28 )  we get 

Finally, we can invert the last equation to write the energy (the Hamiltonian), in terms 
of the Ji as 

In order to apply the Bohr-Sommerfeld quantisation rule, let us analyse classically 
the degeneracies of the problem. From equation (30) we readily see that U, = vb, since 
aH/aJ ,  = aH/aJb .  This means that we will be able to express the Hamiltonian in terms 
of only two action variables. Consequently, one of the associated frequencies will 
vanish. With this purpose, let us make the canonical transformation to a new set of 
action-angle variables { w l  , w 2 ,  w 3 ,  J1 , J2 ,  J3}, characterised by the generating function 

Hence, the following transformation equations give us the relations between the new 
and the old sets of action variables 

Adding equations ( 3 3 a )  and (33b)  we get 

J,+Jb=J’. 

The new angle variables are obtained by 
(33 )  

(34)  
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and then the associated frequencies are given by 

= v, - v b  = 0 v2 = v b  U2 = U,$. (35) 

The proper action variables are therefore J2 and J3 , since the associated frequencies 
do not vanish. Writing the energy in terms of these variables we have 

-2ma2.rr2 
E =  

(J2 + JJ’, + 8 .rr2 mp)’ 
Proceeding now with the Bohr-Sommerfeld prescription we put 

J 2 =  nh J3 = p h  n , p  = 1,2, .  . . (37) 

and finally obtain the quantum energy spectrum for the bound states of the Hartmann 
potential 

-2ma 2 ~ 2  

( n h  + J p 2 h 2  + 8 7 “ ) ’  
En, = (38) 

in complete agreement with previous results [ l ,  3-61. The particular case of the 
Coulomb potential can be treated correctly if we put p = O  in (36). However, we see 
that there still remains a degeneracy (J2  and J3 are no longer proper action variables 
for the problem), since v2 = a H / a J 2  = a H / a J 3  = v 3 .  Therefore, we will be able to define 
a new set of action variables such that J2+ J3 = J ;  and write 

Substituting J ; = n h  in (39) we obtain the correct energy levels for the hydrogen 
atom [lo]. 

We would like to thank Professor A Vaidya for helpful discussions and Conselho 
Nacional de Pesquisas of Brasil for partially supporting this work. 
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